

Interpreting Aircraft Observations of Greenhouse Gases

GHG Summer School 2016 – Southampton

Grant Allen (grant.allen@manchester.ac.uk)

This class: Intro & Learning outcomes

- What can (and can't) aircraft data do for GHG science?
- An introduction to the FAAM aircraft and its measurement suite
- Case study examples of FAAM use for measurement-led investigations
- How to analyse and interpret aircraft data

- IDL computer exercise:
 - An intro to real FAAM data
 - Interpretation methods and tools

Aircraft vs other sampling platforms

Method	Pros	Cons
Ground-based in situ	Precision measurement Dense sampling/representivity of the immediate environment	Only represents a point in space and time (relies on air coming to the instrument)
Aircraft in situ	Wide coverage (100s km) Precision measurement Mapping Planned sampling	Inability to sample whole areas simultaneously Difficult to plan in a "dynamic" environment
Ground remote sensing	Wide spatial coverage (~km)	Less precise Needs knowledge of dynamics
Satellite remote sensing (aka Earth Observation)	Global Coverage and mapping Continuous datasets	Long (poor) repeatability Poor precision Poor spatial resolution (100s m – 10km)
Regional Models	Able to model processes at scales of human interaction	Unable to scale up to global, long-term impacts
Global Models	Able to extrapolate to the far future	Lacks detailed process and scale interactions

What science can aircraft facilitate?

Uses the atmosphere as a natural laboratory for:

- Atmospheric chemistry and air quality
- Source apportionment and fluxes (inc. GHGs)
- Airmass characterisation and transport
- Cloud microphysics
- Radiative transfer processes and energy budgets
- Numerical Weather Prediction
- Land-air-sea interactions
- Coupled processes (e.g. aerosol-cloud interactions)
- Spatial scalability and scale-coupled processes (e.g. gravity waves, cloud evolution, plume chemistry)

What science can aircraft facilitate?

- Aircraft are a very useful bridging tool that link datasets at various scales as well as providing tailored datasets that are useful in isolation.
- Careful flight planning is required to make the most of the sampling.
 This requires:
 - A prior hypothesis to be tested
 - A flight design that tests the hypothesis, constrained by practicalities such as weather on the day, flight area restrictions etc
 - Flexibility for decision-making in the air based on realtime observations
- Careful post-flight analysis is needed to make sense of the data. Aircraft data analysis is unique in that it is multi-dimensional and not uniformly gridded in space and time. As such, it often demands a forensic approach, where the data are the clues that lead the investigation there is no set formula for aircraft data analysis and every flight is different.

Quantifying Emissions: The problem of scales

- •The Problem: Processes/modelling/understanding at small (e.g. urban) scales not easily extrapolated to large (global) scales
- •A solution: Airborne in situ and aircraft remote sensing at local-to-regional scales: to test models with measurements that link these scales, e.g. Karion et al., Mays et al.

The FAAM Aircraft

FAAM Measurement suite

The University of Manchester

In situ (1-32 Hz)

- CH₄, CO₂, N₂O
 (Aerodyne QCL, LGR FGGA)
- <u>CO</u>, O₃, NO_x
- Dropsondes (T, p, q, winds)
- GPS, aircraft configuration
- Chemical Ionization MS (HNO3, HCN, HCOOH)
- Aerosol size, number, chemical functionality

Whole Air Sample (WAS) system

- 64 x 3 litre silico-steel canisters
- GCxGC: C₆-C₁₃ NMHC, oxygenated VOCs
- Continuous flow GC Trace gases and $CH_4 \delta^{13}C$

Remote sensing

- Nadir open-path FTIR (ARIES)
- Vertical profiles of CH₄, N₂O, O₃ etc
- Cloud/Aerosol lidar

Aircraft analysis: An example from VOCALS

Two meteorological periods:

- Period 1: 15th-31st Oct → Surface anti-cyclone, unstable STJ, Variable FT airmass history
- Period 2: 3rd-12th Nov → UT anti-cyclone, steady STJ, consistent FT history.
- Frequent pollution layers in the FT were observed (especially near the coast)
 in Period 1 (below)

Period 1 – Free troposphere

- FT has a gradient in source origin
 Continental PBL sources near the coast
- Descended long-range remote sources west of 75 W.

 Uplift to UT may have frozen in some pollution signatures and removed others

Period 2

72.0

-73.0

=74.0

-76.0

-77.0

-78.0

-79.0

-80.0

-81.0

-82.0

-83.0

-84.0

-85.0

-86.0

-87.0 -88.0

-89.0

-90.0

Much more consistent marine MBL origins for all FT air along 20 S

All but the trajectories very near to shore have a remote origin.

10-day Back Trajectories, 20081101, 00UTC

Boundary layer mass balance

Surface flux = outflow - inflow

Surface flux = outflow - inflow

Mass Balancing Flux Strategy

The University of Manchester

Flight B724 - 30 July 2012

London Case study during Olympics 2012
Complimentary to the ClearfLo
Westerly winds from the Atlantic and Arctic

Flight B724 - 30 July 2012

The University of Manchester

Flight B724 – 30 July 2012 - Olympics

Urban enhancement of CH₄ and CO ~50 ppb near the surface

NAME dispersion modelling

- Influence of London emissions on air sampled by the aircraft along plane AB
- Determined using backwards NAME runs for 10000 particles released from the GPS of the aircraft.
- Warm colours show regions of greater airmass influence from London and vice versa for darker colours.

Fluxes through downwind plane

	CO ₂	СО	CH ₄
Background (ppb)	385.8 ± 1.4 ppm	96 ± 5	1883 ± 8
Peak enhancement (ppb)	13.3 ppm (3%)	30 (31%)	73 (4%)
Flux AB (mol s ⁻¹)	38453 ± 3346	253 ± 11	264 ± 16
Flux AB London (mol s ⁻¹)	35861 ± 2553	219 ± 8	238 ± 12
NAEI flight track (mol s ⁻¹)	67904	462	n/a
NAEI Greater London (mol s ⁻¹)	15294	98	71

- Downwind CO₂ flux in between London NAEI and regional NAEI aggregate flux
- CO flux lower than both London and regional NAEI
- CH₄ flux 3 times higher than London inventory alone

Fluxes through downwind plane

			<u>Flux (μmol m⁻² s⁻¹)</u>			
	Location	Year	Season	CO ₂	СО	CH ₄
This study (mass balance)	London	2012	Summer	21 ± 3	0.12 ± 0.02	0.13 ± 0.02
This should be also as a \2	Landan	2042	C	1 to 83		0.01 to 0.37
This study (eddy-cov.) ^a	London 2012	Summer	(28 ± 17)		(0.15 ± 0.08)	
Font et al. (2013) ^b	London	2011	Autumn	46 to 104		
Helfter et al. (2011) ^c	London	2007	Year round	7 to 47		
Harrison et al., (2012) ^d	London	2007/08	Autumn		0.25 / 0.17	
Rigby et al. (2008) ^e	London	2006	Year round	18 ± 28		
Mays et al. (2009) ^h	Indianapolis	2008	Spring	19.2 ± 15.4		0.14 ± 0.1

^a Range of the fluxes at the BT tower averaged for Summer 2012 (numbers in brackets show fluxes for 30 September 2012).

^b mass balance flux range using airborne measurements from 4 flights

^c EC range

^d EC means for 2 autumn periods

^e boundary layer model, average emission rate for winter period.

h mass balance flux range from 8 flights

ⁱ EC range of fluxes.

^k EC mean daytime flux.

MAMM, Methane in the Arctic: Measurement and Modelling

The University of Manchester

(Pyle et al., poster B33K-0613)

(www.arctic.ac.uk)

Arctic Airborne Measurement

Wetland CH4 flux Survey

Wetland Survey

The University of Manchester

Transects parallel to the wind vector

The University of Manchester

	Flux (mg hr ⁻¹ m ⁻²)		
	CH ₄	CO ₂	
Eastward transect	1.1 ± 0.6	-375 ± 202	
Westward transect	1.6 ± 0.5	-357 ± 135	
Both transects	1.2 ± 0.5	-350 ± 143	
Whole air samples	1.0 ± 0.6	-315 ± 368	

Photo: Nicola Warwick

Spatial Scalability: Sodankyla chamber fluxes

39 chambers in the wetland

21 chambers in the forest

Photos: Kerry Dinsmore

Comparison with ground based fluxes

Corine land use map 2006

Corine land use map 2006

Comparison with ground based fluxes

Scale chamber fluxes using the land types within the aircraft footprint.

IDL Exercise

Go to (or navigate to via <u>www.faam.ac.uk</u>):

http://www.faam.ac.uk/index.php/flying-calendar/icalrepeat.detail/2015/05/12/9880/-/b905-b906-gauge-flight

Read the "sortie briefs"