

Atmospheric measurements

Dr Kieran Stanley and Dr Ann Stavert

Aims

- Overview of trace compounds in the atmosphere
- Instrumentation used to measure trace compounds
- Understanding measurements
- Calibration and Non-linearity
- Interpretation of measurements (Practical)

The Atmosphere

Temperature structure of the atmosphere and ozone layer

Pressure structure of the atmosphere

Trace components in the atmosphere

Trace components in the atmosphere

Motivation for trace gas measurements in the atmosphere

Summer smog O₃ (VOCs/NO_x) Winter smog particles, CO

Acid rain SO_{2,} NO_x

Motivation for trace gas measurements in the atmosphere

Global warming

CO₂/CH₄/N₂O/O₃/halocarbons

A1B: 2090-2099

Ozone depletion

halocarbons

Motivation for atmospheric measurements **1. Ozone Depletion**

Gas	Pre-1750 tropospheric concentration ¹	Recent tropospheric concentration ^{2,3}	GWP ⁴ (100-yr time horizon)	Atmospheric lifetime ⁵ (years)	Increased radiative forcing ⁶ (W/m ²)			
Concentrations in parts per trillion (ppt)								
CFC-11 (CCl ₃ F)	zero	232 ³	4,660	45	0.060			
CFC-12 (CCl ₂ F ₂)	zero	516 ³	10,200	100	0.166			
CFC- 113(CCl ₂ CClF ₂)	zero	72 ³	5,820	85	0.022			
HCFC- 22(CHCIF ₂)	zero	233 ³	1,760	11.9	0.049			
HCFC- 141b(CH ₃ CCl ₂ F)	zero	24 ³	782	9.2	0.0039			
HCFC- 142b(CH ₃ CCIF ₂)	zero	22 ³	1,980	17.2	0.0041			
Halon 1211 (CBrCIF ₂)	zero	3.6 ³	1,750	16	0.0010			
Halon 1301 (CBrCIF ₃)	zero	3.3 ³	6,290	65	0.0010			
HFC- 134a(CH ₂ FCF ₃)	zero	84 ³	1,300	13.4	0.0134			
Carbon tetrachloride	zero	82 ³	1,730	26	0.0140			

(CCl₄)

Source: http://cdiac.ornl.gov/pns/current_ghg.html Accessed 28/07/2016

1 part per trillion = 1 ppt 1 ppt = 1 drop diluted into 20 Olympic swimming pools

Motivation for atmospheric measurements **2. Global warming**

Source: IPCC 2007

http://www.esrl.noaa.gov/gmd/ccgg/trends/history.html

Source: IPCC 2013

The Choices We Make Will Create Different Outcomes

What can be done?

Measurements Instruments

Recent GHG mole fractions

Gas	Pre-1750 tropospheric concentration ¹	Recent tropospheric concentration ^{2,3}	GWP ⁴ (100-yr time horizon)	Atmospheric lifetime ⁵ (years)	Increased radiative forcing ⁶ (W/m ²)		
Concentrations in parts per million (ppm)							
Carbon dioxide (CO ₂)	~280 ⁷	399.5 ^{2,8}	1	~ 100-300 ⁵	1.94		
Concentrations in parts per billion (ppb)							
Methane (CH ₄)	722 ⁹	1834 ²	28	12.4 ⁵	0.50		
Nitrous oxide (N ₂ O)	270 ¹⁰	328 ³	265	121 ⁵	0.20		
Tropospheric ozone (O ₃)	237 ¹	337 ²	n.a. ³	hours-days	0.40		
Concentrations in parts per trillion (ppt)							
Sulfur hexafluoride (SF ₆)	zero	8.6 ^{3,11}	23,500	3200	0.0049		

Source: http://cdiac.ornl.gov/pns/current_ghg.html Accessed 28/07/2016

Overview of measurement techniques used for atmospheric trace gases

General

GC (and GC–MS)

Optical

Satellite

Gas Chromatography

Gas Chromatography - simple schematic

Detector	Туре	Support Gas	Selectivity	Detectability	Dynamic Range
Flame ionization (FID)	Mass flow	Hydrogen and air	Most organics. (CH ₄)	100pg	10 ⁷
Electron capture (ECD)	Concentration	Make-up	Halides, nitrates, nitriles, peroxides. (N ₂ O, SF ₆ , CFCs)	50fg	10 ⁵
Thermal Conductivity (TCD)	Mass Flow	Hydrogen and air	Nitrogen, phosphorous	10pg	10 ⁶
Photo-ionization (PID)	Concentration	Make-up	Aliphatics, aromatics, ketones, esters, aldehydes, amines, heterocyclics, organosulphurs, some organometallics	2pg	10 ⁷

Ridge Hill µECD

Constructed July-Sept 2011

SF₆ & N₂O Chromatography

Mass Spectrometry

Mass Spectrometer Overview

Quadrupole Mass Analyser

- Consists of 4 parallel metal rods with different charges
- Oscillating DC and AC electric fields are applied that effect the trajectory of the ions travelling down the flight path
- For given AC and DC voltages, only ions of a certain mass-tocharge ratio pass through the quadrupole filter

Medusa-GCMS

The Medusa-GCMS used within AGAGE to measure lots of GHGs

http://agage.eas.gatech.edu/instruments-gcms-medusa.htm Miller et al., Anal. Chem., 2008.

Medusa-GCMS compounds

	[2014]	Typical		[2014]	Typical		[2014]	Typical
Compound	(ppt)	% precision	Compound	(ppt)	% precision	Compound	(ppt)	% precision
CF ₄	81.8	0.11	HFC-365mfc	1.03	1.82	CH₃Br	7.61	0.26
PFC-116	4.10	0.31	HFC-4310mee	0.26	2.13	CH ₃ I	0.58	0.64
PFC-218	0.61	1.22	HCFC-22	241.5	0.17	CH_2CI_2	49.1	0.31
PFC-318	1.48	0.60	HCFC-124	1.27	1.57	CHCl ₃	11.6	0.22
C ₆ F ₁₄	0.30	1.51	HCFC-141b	25.4	0.19	CCl ₄	82.8	0.30
SF ₆	8.45	0.17	HCFC-142b	23.4	0.21	CH_2Br_2	1.55	0.51
SO_2F_2	2.14	0.64	CFC-11	233.9	0.11	CHBr ₃	4.24	0.35
HFC-23	27.8	0.39	CFC-12	523.4	0.07	CH ₃ CCl ₃	3.73	1.24
HFC-32	11.6	0.69	CFC-13	3.01	0.82	CHCICCI ₂	0.36	1.28
HFC-125	18.1	0.54	CFC-113	72.8	0.12	COS	446.5	0.13
HFC-134a	84.2	0.19	CFC-114	16.3	0.23			
HFC-143a	17.4	0.40	CFC-115	8.40	0.31			
HFC-152a	10.0	0.41	H-1211	3.87	0.31			
HFC-227ea	1.10	0.83	H-1301	3.41	0.72			/
HFC-236fa	0.14	3.28	H-2402	0.43	0.75			
HFC-245fa	2.40	0.75	CH₃Cl	532.9	0.16			

Optical instruments

Optical instruments

- Cavity ring-down spectroscopy
- Off-axis integrated cavity output spectroscopy
- Fourier transform infrared spectroscopy
- Nondispersive infrared spectroscopy
- Quantum cascade laser absorption spectroscopy

Cavity ring-down spectrometry

What is CRDS?

- Cavity Ring Down Spectroscopy (CRDS)
 - Laser based, TIME BASED, linear optical absorption technique for measuring gas concentration or isotopes

What happens when you introduce molecules that absorb light at the wavelength of the laser?

CRDS: Time Based Measurement

The time sequence of pulses leaving the cavity with NO absorbing molecules.

Understanding Measurements

Type of network/site

Global or baseline

Regional

Source: https://gawsis.meteoswiss.ch/GAWSIS//index.html#/ Accessed 28/7/16

Global/baseline sites

Cape Grim, Tasmania

- Made from stations on islands, near to the coast or at mountain stations
 - Highly dependent on the prevailing wind direction
- Produce baseline data that is free from strong pollution sources
- Representative concentrations at that latitude of the station
- Historically used as models were not able to disentangle the complex terrestrial signals.

Global AGAGE GHG and ODS measurement network

Mace Head, Ireland

Trinidad Head, California

Cape Matatula, Samoa

Ragged Point, Barbados

Cape Grim, Tasmania

AGAGE

- Measure over 50 compounds in situ using two instruments
 - Medusa-GCMS
 - ▶ ODS (CFC, HFC, HCFC, PFC, Halons, etc.)
 - ► GC-ECD-FID
 - CH₄, N₂O, CHCl₃, CO, H₂, CFC-11, CFC-12, CFC-113, CH₃CCl₃ and CCl₄

Data available via <u>https://agage.mit.edu/data/agage-</u>

<u>data</u>

NOAA/GMD network for measurements of atmospheric pollutants

NOAA GMD

- Composed of 6 staffed in situ measurement locations and ~ 160 unmanned locations.
- Most stations fill flasks and send them back to a central lab to be analysed.
- Data available from: <u>http://www.esrl.noaa.gov/gmd/dv/ftpdata.html</u>

Source: http://www.esrl.noaa.gov/gmd/ccgg/ Accessed 29/7/16

Global Atmospheric Watch

Source: https://gawsis.meteoswiss.ch/GAWSIS//index.html#/ Accessed 28/7/16

Regional sites

- Often made from tall towers.
 - Help reduce the influence of localised fluxes.
- Constrain regional fluxes of GHGs using measurements combined with transport models.
- Can give a concentration footprint of an area as large as 10⁶ km².
- Tall platforms allow for multiple inlets
 - Can observe nocturnal planetary boundary layer movement.

Integrated Carbon Observation System

- European research infrastructure dedicated to measuring, analysing and understanding GHGs in the atmosphere, over the oceans and at the ecosystem level
- Focussed on C mole fractions within Europe.
- Use near real time (NRT) data
- Composed of mostly regional sites (plus two baseline stations
 Mace Head and Jungfraujoch)

Enhanced tall tower network: UK DECC and GAUGE

Site location

- Hemispherical gradient:
 - Lower concentrations in southern hemisphere
 - Differences in seasons
- Localised issues:
 - Strong pollution sources that blanket measurements.
 - Topography
 - Dominant air masses

Site setup

- Something need to consider when interpreting data and modelling data.
- Even small issues can cause significant changes in mole fraction measurements.
- Things to consider:
 - # inlets
 - Inlet heights
 - ▶ How H₂O is dealt with
 - Instrumentation used

Example site setup: Tacolneston, Norfolk

Number of inlets

- Why important?
 - Can show nocturnal planetary boundary layer movements
 - If questionable data from one inlet, can look at another
 - Amount of continuous data from one inlet
 - Complex logistics

Sample inlet height

- Why important?
 - Areal footprint that observe
 - Localised pollution sources

H_2O

- GHG mole fractions reported as dry mole fractions.
- \blacktriangleright H₂O one of the biggest issues with measurements.
- How to correct for it?
 - Chillers/ice traps

► Nafion drier

Magnesium perchlorate driers

Correction coefficients

Measurement Precision

Cleaned valve rotor

ti 🚮 ৰা)) 14:50:14 -25

Meta data information

- Information on dataset when download it from data source
- Why important to think about?
 - Site location
 - Instrumentation used
 - Inlet height
 - Type of measurement (discreet or continuous)
 - Site type
 - ▶ How deal with H₂O

Meta data example

66 1001 O'Doherty, Simon; Stanley, Kieran; Stavert, Ann; Young, Dickon GB05L, "ACRG, University of Bristol, School of Chemistry, Cantocks Close, BS8 1TS, Bristol, United Kingdom", UNIVBRIS, , "Cantocks Close,, BS8 1TS, Bristol, United Kingdom", , , Stanley, Kieran GAW-WDCGG-node UK_DECC 11 2012 01 01 2016 06 06 Ø Days from the file reference point (start_time) 1 1 1 1 1 1 1 9999.999999 9999.999 999.999 9.999 9999.999 999.999 9.999 end_time of measurement, days from the file reference point dinitrogen oxide, ppb dinitrogen_oxide, ppb,Statistics=expanded uncertainty 3sigma numflag dinitrogen oxide, no unit SF6, ppt SF6, ppt,Statistics=expanded uncertainty 3sigma numflag SF6, no unit 45 Data definition: EBAS_1.1 Set type code: TI Station code: GB0055R Platform code: GB0055S Timezone: IITC Startdate: 20120301151435 Timeref: 00 00 20160606113900 Revision date: Component: greenhouse_gas Unit: ppt Matrix: air Period code: 1y Resolution code: 10mn Sample duration: 1mn Laboratory code: GB05L Instrument type: online gc Instrument manufacturer: Agilent Instrument model: 7890A_uECD Agilent_GC-uECD_7890_MD_RGL Instrument name: CN11171049 Instrument serial number: Method ref: GB05L_ACRG_DECC_MD Orig. time res.: 10mn GB0055R.20120101.20160606.greenhouse_gas.air.12m.10mn.GB05L_ACRG_DECC_MD.nas File name: RGL Station GAW-ID: Station latitude: 51.997558 Station longitude: -2.54003 Station altitude: 204m Station land use: Warm Temperate Station setting: Regional R Station GAW type: Station WMO region: Originator: O'Doherty, Simon, s.odoherty@bristol.ac.uk, University of Bristol, ACRG, Atmospheric Chemistry Research Group, Cantocks Close,, BS8 1TS, Bristol, United Kingdom Originator: Stanley, Kieran, k.m.stanley@bristol.ac.uk, University of Bristol, ACRG, Atmospheric Chemistry Research Group, Cantocks Close,, BS8 1TS, Bristol, United Kingdom Originator: Young, Dickon, , University of Bristol, ACRG, Atmospheric Chemistry Research Group, Cantocks Close,, BS8 1TS, Bristol, United Kingdom Originator: Stavert, Ann, , University of Bristol, ACRG, Atmospheric Chemistry Research Group, Cantocks Close,, BS8 1TS, Bristol, United Kingdom Submitter: Stanley, Kieran, k.m.stanley@bristol.ac.uk, University of Bristol, ACRG, Atmospheric Chemistry Research Group, Cantocks Close,, BS8 1TS, Bristol, United Kingdom Data level: Version: Version description: initial revision, manually inspected Height AGL: 90m Inlet type: Hat or hood Downward facing with hood, 90 m, stainless steel, flow ~20 l/min Inlet description: Volume std. temperature: 273.15K Volume std. pressure: 1013.25hPa start time end time N20 N20 prec numflag SE6 SE6 prec numflag

Data locations

- WDCGHG: <u>http://ds.data.jma.go.jp/gmd/wdcgg/</u>
- CDIAC: <u>http://cdiac.ornl.gov/</u>
- EBAS: <u>http://ebas.nilu.no/</u>
- NOAA GMD: <u>http://www.esrl.noaa.gov/gmd/dv/ftpdata.html</u>
- ObsPack GlobalView: <u>http://www.esrl.noaa.gov/gmd/ccgg/obspack/</u>
- AGAGE: <u>https://agage.mit.edu/data</u>
- ICOS: not online yet but watch this space!

Summary

- Most interested in troposphere for GHG measurements.
- ▶ GHGs only make up a very small portion of the atmosphere.
- Measurements key to helping inform climate change mitigation policy.
- Large number of stations measuring GHGs over the World.
 - But large areas where very few measurements taken.
- Key to understanding measurements:
 - Station location
 - Type of station
 - Instrumentation used
 - Site setup
 - ► H₂O issue
- All necessary information in data headers ALWAYS READ!!!
- Lot of work goes into measurements: make sure you properly acknowledge the work that goes into the numbers you use.

Thank you

Time for the exciting stuff!