

Calculating greenhouse gas emissions at global and regional scales using atmospheric measurements

Tim Arnold

National Physical Laboratory
University of Edinburgh

GLOBAL ATMOSPHERIC CHEMISTRY

Motivation for immediate and significant emissions reductions

IPCC 5th Assessment Report (Executive Summary)

Why atmospheric monitoring can play an increasingly important role

- Provides a reality check what's actually happening
- It is up to date to direct timely policy
- Independent

A simple example of emissions verification from atmospheric measurements

L is the removal rate e.g. Gg / year

S is the source rate

B(t) is the atmospheric burden at time t

$$\frac{\mathrm{d}B(t)}{\mathrm{d}t} = S - L \qquad L = \frac{B(t)}{t}$$

$$\frac{\mathrm{d}B(t)}{\mathrm{d}t} = S - \frac{B(t)}{t}$$

$$\frac{\mathrm{d}B(t)}{\mathrm{d}t} = S - \frac{B(t)}{t}$$

$$\frac{B(t)}{t} \to 0$$

$$\frac{\mathrm{d}B(t)}{\mathrm{d}t} = S$$

Bayesian inversions and more complex models

12-box model

$$y = Mx$$

 $\mathbf{y} = (y_1 \quad \cdots \quad y_m)$ is the vector of simulated mole fractions

 $\mathbf{x} = (x_1 \quad \cdots \quad x_n)$ is the state vector

 \mathbf{M} is the sensitivity matrix (with dimension $m \times n$)

$$\mathbf{M} = \begin{pmatrix} M_{1,1} & \cdots & M_{1,n} \\ \vdots & \ddots & \vdots \\ M_{m,1} & \cdots & M_{m,n} \end{pmatrix}$$

$$J = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{b})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{b}) + \frac{1}{2} (\mathbf{M} \mathbf{x} - \mathbf{y}_{o})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{M} \mathbf{x} - \mathbf{y}_{o})$$

Atmospheric measurements in verification

Arnold et al., 2012, *Analytical Chemistry* Arnold et al., 2013, *PNAS*

Atmospheric monitoring between the source and the well-mixed atmosphere

Higher spatial coverage

AGAGE NF₃ measurement network

Calibration and intercomparison – vital exercises in high-precision networks

AGAGE now making 20,000 calibrated measurements per year globally

The tool of choice – Lagrangian particle dispersion models

Black arrows show wind direction

Red and blue lines show movement of particles

Met Office NAME model

Met Office Unified Model (NWP)

Modelling of atmospheric mixing ratios at a regional scale

(Lin, Lang. Mod. Atmos., 2012)

We release 20,000 **inert** particles over one hour from the measurement site and follow backwards for 30 days

Modelling of atmospheric mixing ratios at a regional scale

Combining model and observation data

$$J = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{b})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{b}) + \frac{1}{2} (\mathbf{M} \mathbf{x} - \mathbf{y}_{o})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{M} \mathbf{x} - \mathbf{y}_{o})$$

Accounting for the variable/uncertain background atmospheric contribution

The biggest issue is in understanding how well the model behaves at each measurement time

$$J = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\mathrm{b}})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathrm{b}}) + \frac{1}{2} (\mathbf{M} \mathbf{x} - \mathbf{y}_{\mathrm{o}})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{M} \mathbf{x} - \mathbf{y}_{\mathrm{o}})$$

 $\sigma_{model} = \sigma_{baseline} \times factor_{BLH} \times factor_{Topography} \times factor_{Inlet}$

.. And how well is prior information understood?

China

Uncertainty at higher spatial resolution

Model intercomparison project for SF₆, HFC-125 and HFC-134a

Model intercomparison project

Table 1: Overview of inversion systems

Characteristic	EMPA	EMPA2	NILU	UKMO
Approach	Extended Kalman Filter (ExKE)	Bayesian	Bayesian	Bayesian
Transport model	FLEXPART	FLEXPART	FLEXPART	NAME
Meteorology	ECMWF analyses 0.2°x0.2°, 3hrly	ECMWF analyses 0.2°x0.2°, 3hrly	ECMWF analyses 0.2°x0.2°, 3hrly	UKMO analyses 0.352° x 0.234°, 3hrly
Computational domain	Nested, global	Nested, global	Nested, global	45°W - 40°E, 25°N - 80°N
Inversion grid	0.1°x0.1°min., reduced according to residence time	0.1°x0.1°min., reduced according to residence time	1°x1° over land, reduced over ocean and far eastern boundary	0.352° x 0.234° min., reduced acc. to residence time and within country boundaries
State vector length (e=emiss., b=background, o=other)	1092 (1083 <i>e</i> + 3 <i>b</i> + 6 <i>o</i>)	M1: 522 e + 84 b M2: 522 e + 84 b M3: 405 e + 56 b FLAT: 522 e + <mark>56 b</mark>	M1: 1140e M2: 1140e M3: 1140e FLAT: 1140e	~150e + 11 b
Assimilation time resolution	3-hourly means	3-hourly means	Daily means	3-hourly means once per day
Spatial correlation of prior	500 km	None	200 km over land 1000 km over sea	None
Backwards mode run time	5 days	5 days	10 days	19 days
Prior background mole factions	None, continuously estimated by ExKF	60-day REBS window, biweekly reference points	See Thompson and Stohl (2014) and description below.	Mace Head baseline for all sites, see Manning et al. (2011)
Temporal correlation of observation error	Red-noise Kalman filter	None	None, assumed negligible for daily means	None, assumed negligible with one value per day
Key references	Brunner et al., 2012	Stohl et al., 2009, Vollmer et al., 2009	Thompson and Stohl. 2014	Manning et al., 2011

Model intercomparison project

Brunner, Arnold et al., 2017, ACPD

European methane model intercomparison project

Bergamaschi et al., submitted

Model validation using aircraft measurements

Bergamaschi et al., submitted

Need to prepare for satellite observations

Launch ~2018 Column CO₂ measurements over cities

http://www.jpl.nasa.gov/missions/orbiting-carbon-observatory-3-oco-3

Nitrous oxide and methane have complex mixed source emissions

<u>CH</u>4

- Wetlands (microbial)
- Fossil fuels
- Biomass burning
- Landfills
- Ruminants
- Rice cultivation

<u> N₂O</u>

- Soils
- Ocean
- Biomass burning
- Sewage
- Fossil fuel burning

Ganesan et al., ACP, 2015

A large range of CH₄ emissions:

- 1.65–2.67 Tg yr-1 (Ganesan et al., 2015)
- 1.7–3.0 Tg yr–1 (MO for DECC)
- 1.8–3.0 Tg yr-1 (Bergamaschi et al., *in prep*)

Methane sources have different isotopic signatures

Laboratory development of isotopologue measurements

CH₄ made of ¹²CH₄, ¹³CH₄, ¹²CH₃D.. and 7 more!

Preconcentration Technique

Laser spectroscopy

