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Overview

* Motivation: why do GHGs matter?

e Measurements: what do measurements tell us about
the behaviour of GHGs

* Modelling: What is GHG modelling and what can it tell
us?

Mostly CO,, some CH, and general trace gas modelling
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Earth Radiation Components

Radiation balance of the Earth "

* Earth must emit as much energy
as it receives from the sun

* Some is reflected, rest is adsorbed | ;

* For Mars, this well-predicts the
temperature

— But it suggests Earth would have
average temp of -18C

— It’s warmer! (15C)
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Radiation balance of
the Earth

e Earth is colder than the
sun

e Different wavelengths of
radiation

e Different gases adsorb the
radiation coming in as
going out!

— GHGs let radiation in, but
block it leaving
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Why do some gases adsorb in the IR and not
others?
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Measuring GHGs

* |t should come as a surprise that we have only
measured GHGs since the late 1950s.

* The link between GHGs and climate is now well
established so that GHGs are a political issue.

* Consequently, we are only just getting to grips with
issues that should have been addressed decades ago.




* Best, longest term record
(1950s) is from the Mauna
Loa observatory in Hawaii

* Charles Keeling discovered:

— A seasonal cycle

— Long-term increase
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Fig. 1. Variation in concentration of atmospheric carbon
dioxide in the Northern Hemisphere.

Tellus XII (1960), 2
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‘ | Measuring Atmospheric CO,

e A zeroth order model:

— Anannual linear increase
(fossil fuel combustion)
superimposed with a
sinusoid (land and ocean
biosphere)
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GHG concentration [unit]

Invariant seasonal cycle
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Anthropogenic and natural factors superimpose signatures
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What we are left with: a complex observed variation
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Year-on-year rise of atmospheric CO,

ppm per year
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Every year the average mixing
ratio of CO2 increases

However this is less than
what we’d expect from
adding up all the carbon we
burn




Net Natural Carbon Flux to atmosphere

Net Carbon Flux to Atmosphere (growth rate — FF emissions)
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Over the past 50 years approximately 44.1+14.4% of emitted CO, (inc. fossil
fuel and LUC) has stayedin the atmosphere: the natural biosphere appears
to respond to increasing atmospheric CO,.




Normalised scale
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‘ . Seasonality of atmospheric CO,

CO2 Concentration (ppm)
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* Same happens in Southern
Hemisphere (6 months out of
phase), but less intense as
there’s less biomass.




Changes in seasonality of atmospheric CO,
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plant activity®. Here we report that the annual amplitude of the
seasonal CO, cycle has increased by 20%, as measured in Hawaii,
and by 40% in the Arctic, since the early 1960s. These increases
are accompanied by phase advances of about 7 days during the
declining phase of the cycle, suggesting a lengthening of the
growing season. In addition, the annual amplitudes show
maxima which appear to reflect a sensitivity to global warming
episodes that peaked in 1981 and 1990. We propose that the
amplitude increases reflect increasing assimilation of CO, by
land plants in response to climate changes accompanying recent
rapid increases in temperature.
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Graven et al, 2013
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Sources and sinks of atmospheric CO,
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® Will this change in the future, as the climate changes?

2003-2012 Sources (PgC/yr)
*LUC: 0.840.5 (9%)
*FF: 8.6+0.4 (91%)

2003-2012 Sinks (PgC/yr)

*Atmosphere: 4.3+0.1(45%)
*Ocean: 2.6+0.5(27%)
eLand: 2.610.8 PgC/yr (28%)
(land estimate residual)

® What natural processes absorb half of the CO, emitted by human activities?

®© Why does the amount of CO, absorbed change from year to year?
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Outcome: For CO, we have an
incomplete understanding of
regional fluxes.

Situation worse for CH, and N,0.




Models

* One definition:

— A model is a framework (typically mathematical) that tests
scientific understanding through its ability to explain data.

— It should be sufficiently simple that it can, in principle, be
rejected (and refined) with data.

— A predictive capability is developed through this refinement
process.

Interesting articles:
DOI: http://dx.doi.org/10.1175/BAMS-D-13-00080.1
DOI: http://dx.doi.org/10.1016/j.cell.2008.07.033




A “box
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Does not resolve spatial distributions: assume box is well mixed
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“Lifetime” of a molecule

The lifetime t of X in the box: average
, time that a molecule of X remainsin
Atmospheric “box”
——————— that box.

I Chemical Chemical

roduction
P loss I . -

|
Inflow F, L
—> N F_+L+D
: X . : )

Mass of X (kg)

Outflow F_ =

Losses
(kg.s1)
Emission Deposition
Often called the residence time when the

loss is a physical process (e.g., F, or D)
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“Lifetime of a molecule”

We’'re often interestedin the relative importance of each loss term

Fraction f Sink-specific
removed by — out Iifetimes, e.g., t — m
export out of F +L+D lifetime against F
the box export
Total lifetime is calculated in parallel:

1 1 1 1

— =+ +

t tout tL tD

These are considered first order losses: the more you have the more
you can lose.
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Chemical lifetime

Consider a first-order chemical loss for X with rate constant k_

Chemical loss rate is: L = kcm
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Generalise!

F,.; +L+D=(k,y;m+k m+kpym)=k, ym

1
T =—

all k

all

(k,y, Ty NOrmal written as simply k, t)




Lifetime of atmospheric CH,

* Lifetime against sinks include:

— Hydroxyl radical (OH): 9.6 years
— Soils: 160 years
— Stratospheric sinks: 120 years

* These sinks are acting in parallel

* Net lifetime == f — = 8.4 years.

9.6+160 120
* Much shorter than CO,, resulting in larger inter-
hemispheric gradients
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Mixing ratios of atmospheric CH,

Global Distribution of Atmospheric Methane
NOAA ESRL Carbon Cycle

May 2005

* The “magic carpet”

* More production of CH4
in northern hemisphere.

* Losses greatest in
summers
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Mass balance

What is the rate of change of the mass of X in the box?

Chemical Chemical Ioss-I dm
I production — =
dt

= Y7
E

Outflow F,,
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|
|
.
|

Where overall source rate S = F, +E+P

Emission Deposition




Mass balance

gn=S—km
dt
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Mass balance

f T=0 If T=“very large”

—

Initial Steady-state,
conditions Gains = losses
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] Mass balance

m(T) =m(0)e ™ + % 1-e™")

|

fT=1/k=1

m=m(0)e™ + % (1—e™)

e the first term has decayed to 37% and the second term has reached 63% of its
final value...
* 71is a useful characteristic time sometimes called the e-folding lifetime




Mass balance

m(t) = m(0)e™ + % (1= ™)

S | . .
¥)= — sfp-------- gy
) k |
alliX 5
S T om(t) -~ <—-;(1—e"")
2@-1/e) f------ - newX o
k :
: ~ m(0)e™
m(0) |/ T &hitalX

On time scales >> t steady
state can be assumed
e e.g. For OH, t<second, so

measurements basically
tell us the current S/k
balance

If mass stable, suggests

sources=sinks




Mass balance of CH, on earth

CH, mole fraction (ppb)
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dC/dt = 0 does NOT mean that that sources are not still active. It means
that P = L.

For CH4 we do not know with certainty why the growth rate slowed
down in 2000 or why it resumed after 2007.




Moving beyond the box model

* Broadly, there are two types of atmospheric models:

— Eularian models have a fixed grid of multiple boxes. In time,
air (and it’'s components!) moves from box to box.

— Lagrangian models have boxes that move in space, following
a parcel of air.
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Moving beyond the box model o TS

]

* Broadly, there are two types
of atmospheric models:

Eularian models have a fixed grid of
multiple boxes. In time, air (and it’s
components!) moves from box to box. 5

Lagrangian models have boxes that move
in space, following a parcel of air.

(x4 Ax, 1+ AY)




- [} |[Mr. Lagrange|

flowillustrator.com




Puff model

Follow a volume of air (usually an interestingone!), and include terms in the model to account for
dilution from the surrounding air as it travelsdownwind.

dilution dilution Mass balance

equation same as
\ \ """"""" l the box model but
given in terms of
concentration
____________ rather than mass
ty+2Dt so the size of the

puff is kept
arbitrary.

%[X] =E+P-L-D-k; ([X]-[X],) ki (/s) is a dilution rate constant

e Used to follow evolution of isolated pollution plume (e.g., landfill).




Column model

S

E

Trajectory

e Column is “blown” across the

surface, picking up flux E of species

(in units kg.m=2.s1)

Assume well mixed over height h (in

m).

— This height might vary over time/space

— More sophisticated models may
multiple layers with interchange

Frequently used to simulate air

pollution over and downwind of
cities.
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T

Lagrangian

|
position ®
trAtig @

e Transport large number of points with

trajectories from input meteorological
data base (U) + random turbulent
component (U’) over time steps At

Points have mass but no volume

Determine local concentrations as the
number of points within a given volume
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- Lagrangian pros and cons
|

* PROS over Eulerian models:

* no Courant number restrictions (restriction
on time step length required for good
results)

* no numerical diffusion/dispersion

e easily track air parcel histories

e invertible with respect to time

* CONS:

e need very large # points for statistics

e inhomogeneous representation of domain
e convection is poorly represented

e nonlinear chemistry is problematic

ARL/NESDIS EXPERIMENTAL SMOKE FORECAST

Air Concentration (ug/m3) Layer Average 0 m and 5000 m
Integrated from 0600 15 Jul to 0700 15 Jul 17 (UTC)

Y ﬁ> T
&

I

PM25 Release started at 0600 15 Jul 17 (UTC)

- 100 ug/m3

>20 ug/m3
>5 ug/m3
>1 ug/m3

Maximum: 1.4E+03 ug/m3
Minimum: 5.3E-08 ug/m3

NAMS METEOROLOGICAL DATA
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Going global...

* With computers doing the maths, we can do
reasonable simulations of the atmospheric chemistry
of large regions, or even the whole world!

—

NASA simulation of carbon
dioxide mixing ratios
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Atmospheric motion

* |f the earth
didn’t rotate, the
equator being
hotter than the
poles would be
the main driving
force.

Non-rotatingearth
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Approx 30°N and 30°S are

Wind shift to a westerly
direction at higher (mid)

latitudes.

| AtmOSpheric mOtion regions of high pressure

(subtropical anticylones). This is
where we find most of the
major deserts.

Subpolar
low

Polar high

Inter-tropical convergence zone
(ITCZ): persistent convergence
of air and associated rain and

Hadley
clouds. O(100s km) thick.

cell

b 5’:“."‘ qu.: — i ; ‘—f P
ey ) ' “ From ITCZ to 20-30° is the
ce » i \ :

— tropical easterlies (trade
‘ winds).




Copyright © 2008 Pearson Prentice Hall, Inc.




The University of Edinburgh

Vertical transport

* \Vertical transport due to horizontal
divergence or convergence is 1mm-1cm
per s (cf 1-10 m/s for horizontal).

* Timescales from surface to tropopause
about 3 months.

* Local buoyancy canresultin faster
transport, e.g. fires

* Boundary layer mixing can be very fast

* Models typically assume BL mixing is
Instantaneous

Depiction of various surfaces and PBL processes

= = = = = = = = Top of the planetary boundary layer




Movement to/from other boxes which

MOdE"ing in 4D might have more/less X —

Eulerian form: /

Solve continuity oC, _ U = wind vector
equation for mixin or U-Varfart

G 5 ¢ P. =local source
ratios C,-(X, t) Lagrangian form: : of chemical i

dC.

Transport [ |:)I — |_i L;=localsink

- dt
Chemistry \
New X X removed/destroyed

added/createdin in box

I box

Volcanoes Fires Land Human Ocean
biosphere activity Slide c/o D. Jacob
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Modelling in 4D

Long|itude

EQ| |+

/ * Solve continuity equation for
_ ;—,’% ‘ individual gridboxes
* MANY calculations

— More if smaller boxes (for more detailed
results) wanted.

— Current global models have a horizontal
resolution of ~ 0.25° (~25 km) and a
vertical resolution of 100s m.

Chemical Transport Models (CTMs) use external meteorological data as input
General Circulation Models (GCMs) compute their own meteorological fields




Time steps

 Models divide time into discreet time steps

* Calculate changes in modelled parameters from one
time step to next

— “Temporal discretization”
* As with space, shorter time steps can give more

detailed results and higher performance, but require
more computational resources.




Boundary conditions

* For aregional grid,
can’tignore winds
blow in air from
outside the model
domain

* Need boundary
conditions
— From another model
— A decent guess!

-
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Flux inventories

g

. S,

\— ,""'- SRR
 CYE

ﬁ" ko B

\}).. RIS X




f The University of Edinburgh

Garbage in, garbage out

A model is only as good as its inputs!
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Movie

* https://svs.gsfc.nasa.gov/11719



https://svs.gsfc.nasa.gov/11719

Interactive exercise

Python-based exercise
— Code provided, no prior experience needed!

Model of e-folding lifetimes

Simple balances of sources and sinks
Models vs. real world data

Source apportionmentin a 3D model
Basics of inverse modelling




