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Global carbon cycle
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3 ocean carbon pumps

Physical carbon pump Biological carbon pumps
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The simple version
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The slightly more complicated version

Simplified Biological Pump
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And more complicated....

Giering et al. (2014), Nature



The biological carbon pump

e Contributesto the long-
term storage of carbon in
the deep ocean

* |s driven by primary
production by
phytoplankton

* And modulated by the
upper ocean food web

* Mesopelagic
remineralisation is the key

” : to the efficiency of this

pump

Deep ocean

Bacteria

Sea floor




Depth (m)

Why are we interested in the BCP?

Total Dissolved Inorganic Carbon (umol kg™)
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dissolved inorganic carbon in
the ocean is attributed to the

biological pump

A: DIC profile prior to Industrial Revolution
(solubility only)

B: DIC profilein 1995, calculated on the basis
of solubility only

C: Actual profile of DIC in 1995

The difference between B and C is the BCP
contribution to the uptake of CO2



Why are we interested in the BCP?
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Attenuation of POC with depth fits
the ‘Martin curve’
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Importance to global C cycle

A Atmospheric CO,
concentration
reduced if organic C
is remineralised
deeper

w
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Atmospheric pCO,
(Ppm)

i.e. the biological
s  carbon pump is

shallow deep more efficient
Remineralisation depth
of organic carbon
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Overview

. How much carbon does biological activity in the
surface ocean fix?

. When/where does biological activity dominate
CO2 uptake?

. How much organic carbon gets down to the
deep ocean?

. Why is there currently no net anthropogenic
CO2 uptake via the biological carbon pump?

. Could that change in the future?



1. How much carbon does biological
activity in the surface ocean fix?



Ocean primary production

Net Primary Productivity (grams Carbon per mZ per year) Total of
50-60 Gt C
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2. When/where does biological
activity dominate CO2 uptake?



What controls pCO2?

(a) physical transport and solubility

(b) physical transport and biology
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Seasonal cycle of pCO2 in subtropical
North Atlantic
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Seasonal cycle of pCO2 in subtropical
North Atlantic
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Seasonal cycle of pCO2 in subtropical
North Atlantic
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Seasonal cycle of pCO2 in subtropical
North Atlantic
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* Include seasonal
cycle in SST and
calculate pCO2
(blue) — gets the
seasonal change
right

* Keep SST constant
and calculate
pCO2 (green)—
can’t capture the
seasonal changes



Seasonal cycle of pCO2 in subpolar
North Atlantic




SST,C
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SST,C
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Seasonal cycle of pCO2 in subpolar
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Seasonal cycle of pCO2 in subpolar
North Atlantic
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SST vs biology
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3. How much organic carbon gets
down to the deep ocean?



Attenuation of POC with depth fits
the ‘Martin curve’
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The depth that organic
carbon is remineralised
determines ™~ timescales
of storage. Shallower
depth = CO2 re-exchanged
with atmosphere sooner.

Want to know how much
carbon is lost through
respiration and at what
depth



How do we measure the sinking
organic carbon?




More than meets the eye....

Sinking material sample
from NE Atlantic ~ 600 m
depth

Belcher et al. (2016), L&O



How do we measure the sinking
organic carbon?

* Snapshots of flux

e The ocean is BIG and
undersampled

* Need to extrapolate in situ
observations to global scale
to assess magnitude of the
pump

* Look for proxies which can

be measured on global scale
— typically satellite data




Scaling up — proxies
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Laws et al. (2000), GBC
 Database of measurements...

e Use satellite data to estimate global export



Biological C export
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Derived from satellite data using algorithms based on 11 sites
Integral = ~12 GT C yr
Laws et al., 2000, GBC



Comparison to other estimates

Method Value (GT Cyr- | Reference

')
Sediment trap 10 Lampitt and Antia, 1997
extrapolation
f-ratio 20 Eppley and Peterson, 1979
Data analysis 10 Dunneetal., 2007
f-ratio & SST 12 Falkowski et al., 1998

Laws et al., 2000

Inversion of 10 Schlitzer, 2004
nutrient data
ThE-SST 5 Henson et al., 2011

Magnitude of massive C flux in earth system

still uncertain




How efficient is the biological C pump?
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The global database of direct
measurements of b
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How efficient is the biological C pump?

* One measure is to compare how much C
enters the mesopelagic to how much leaves it

e Similarissue with undersampling and need for
extrapolation

e Estimates of global deep organic C flux also
have a big range: 0.2-1.6 PgC/year (Henson et al.
2012, GBC)

- efficiency could be anywhere from 1-35%
(global average)



If we understood all the processes
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4. Why is there currently no net
anthropogenic CO2 uptake via the
biological carbon pump?



Global carbon cycle
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What goes down, must come up

* BCP is responsible for ~2/3 of the surface to
deep gradient in DIC — so why doesn’t it result
in net transport of anthro CO2 into deep
ocean?

* This part of the C cycle seems to be in steady
state....downward transport of DIC balanced
by equally large upward transport
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latitude (°N)

Role of BCP
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5. Could the biological uptake of
CO2 change in the future?



The short answer is yes...

New production

Carbon export flux

Carbon sequestration flux

O Increased N,-fixation

N More efficient
nutrient utilization®

Increased stratification”

iron in HNCL areas

Prolonged periods of

¢ recycled production

6 Increased nutrient input:

|
9

Depends on new production

Decrease in diatoms, shift
towards smaller phytoplankton

Fewer large blooms due to
elevated respiration and grazing

Decreased bioavailability
of carbon-rich DOM

Changes in TEP formation
and stickiness®

Glucosidase activity
increased at lower pH

Formation rate of marine snow

D )

l¢<::

>

Depends on sinking velocity &
packaging of POM

Shifts in food web structure:
e.g. salps replace euphausids®

Spatial or temporal decoupling
between grazers & flux events

Lack of ballasting by coccoliths

and diatom frustules

Mesopelagic microbial activity

Preterential remineralization
of nutrients

Although it’s difficult to pin down the exact mechanisms (or sometimes even direction of

potential change)

Passow and Carlson (2012), MEPS




Even the iron story isn’t
straightforward.....
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Abraham et al. (2000),
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Artificial iron fertilisation experiment in
Southern Ocean

Increase in surface productivity, but no increase
in carbon export!



Natural iron fertilisation

Islands in the
Southern Ocean
are a source of
lithogenic iron
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Future changes in the BCP

50 100 150 200 250 300 350

% change per decade (2006-2100) in organicC
flux at 100m depth w.r.t. present day

IPCC CMIP5 model average

Henson et al., 2016, GCB

Decreased biological
C flux into deep
ocean predictedin
future

Could represent a
positive feedback to
atmospheric CO, (but
unclear how
mesopelagic
remineralisation will
change in future)



Summary

1. How much carbon does biological activity in the surface
ocean fix?

- About half of global productivity takes place in ocean.

2. When/where does biological activity dominate CO2
uptake?

- At high latitudes, in spring, places with a substantial
phytoplankton bloom.

3. How much organic carbon gets down to the deep ocean?

- Still under debate, but probably a few percent of C export.
Mechanisms controlling remineralisation not well understood.

4. Why is there currently no net anthropogenic CO2 uptake
via the biological carbon pump?

- BCP seems to be in steady state during recent past.
5. Could that change in the future?
- Yes, although the mechanisms are currently unclear.



