Workshop on Analytical Methods in Aquatic Biogeochemistry Dissolved inorganic carbon (DIC) & Total alkalinity (TA) Pete Brown National Oceanography Centre, Southampton, UK 1^{ST-}12TH OCTOBER 2018 #### **Contents** - Why is it important to understand the global CO₂ system? - What are the drivers of ocean CO₂ uptake / outgassing? - Consequences of elevated atmospheric CO₂ levels, and associated climate change - · Carbonate system in seawater - Water sampling and storage - Seawater carbon system analysis - Data quality # Why is it important to understand the CO_2 system? - CO₂ controls the fraction of inbound radiation that remains trapped in the atmosphere (greenhouse effect), which controls planetary climate - CO₂ is the raw material used to build organic matter - CO₂ controls the pH of the oceans - Distribution of CO₂ species affects preservation of CaCO₃ deposited on the sea floor Air-sea carbon dioxide fluxes # Annual flux of contemporary CO₂ Takahashi et al (2009) DSR Ocean Circulation Talley 2013 - Ocean Circulation - Transport of heat - Heat fluxes cooling / warming of surface waters drives CO2 uptake / outgassing through impact on CO₂ solubility - Ocean Circulation - Transport of heat - Heat fluxes cooling / warming of surface waters drives CO2 uptake / outgassing through impact on CO₂ solubility - Transport of recently ventilated waters high in anthropogenic carbon to depth - Transport of old waters high in remineralised carbon and nutrients to the surface Ocean Circulation Talley 2013 #### Circulation apparent in DIC distribution # North-South distribution of pCO₂ and DIC Very slow gas exchange (model), constant DIC Rapid gas exchange (model), pCO₂water = pCO₂air Observations: -pCO₂water ≠ pCO₂air -rather slow gas transfer (Sarmiento and Gruber, 2006) - Ocean Circulation - Transport of heat - Heat fluxes cooling / warming of surface waters drives CO2 uptake / outgassing through impact on CO₂ solubility - Transport of recently ventilated waters high in anthropogenic carbon to depth - Transport of old waters high in remineralised - carbon and nutrients to the surface - Biological production and the drawdown in carbon concentrations associated with this - Nutrient supply that sustains biological production #### Biological influence on air-sea flux. - Blooms of plankton fix carbon dioxide from the water and lower DIC, hence pCO₂. - Particularly marked in the North Atlantic which has the most intense bloom of any major ocean region. - In the equatorial Pacific, plankton blooms are suppressed by lack of iron part of the explanation for high pCO₂there. - In the equatorial Atlantic, upwelling is less intense and there is more iron from atmospheric dust. #### Ocean carbon "pumps" Deep water has higher (10-20%) total carbon content and nutrient concentrations than surface water. There are several processes contributing to this: The "Solubility pump" tends to keep the deep sea higher in total inorganic carbon (DIC) compared to the warm surface ocean. The "Biological pump(s)" – the flux of biological detritus from the surface to deep, enriches deep water concentrations. There are two distinct phases of the carbon in this material: - The "soft tissue" pump enriches the deep sea in inorganic carbon and nutrients by transport of organic carbon compounds. - The calcium carbonate pump enriches the deep sea in inorganic carbon and calcium. #### Ocean biological "pumps" Falling dead organisms, faecal pellets and detritus are "remineralised" at depth. Remineralization occurs - · By bacterial activity. - By inorganic dissolution of carbonate below the lysocline. - The different phases have different depth profiles for remineralisation. # Ocean biological soft tissue pump This mechanism acts continually to reduce the partial pressure of ${\rm CO_2}$ (p ${\rm CO_2}$) in the surface ocean, and increase it at depth. Over most of the ocean, upwelling water is depleted of inorganic carbon and nutrients (nitrate and phosphate) by plankton. In the process they remove about 10% of the inorganic CO_2 in the water. Most of this goes to form organic matter via the reaction: $$CO_2 + H_2O \Rightarrow CH_2O + O_2$$. Because the *buffer factor* β ~10, this has a large effect on surface pCO₂, decreasing it by 2-3 times. The reverse reaction occurs by (mostly bacterial) respiration at depth, and increases ${\rm CO_2}$ concentration there. Concentration # Surface pCO₂, nutrient and surface temperature in the North Atlantic #### Ocean biological carbonate pump This mechanism also transfers carbon from the surface ocean to the deep sea. Some of the carbon taken up by the biota in surface waters goes to form calcium carbonate. The CaCO₃ sinks to the deep sea, where some of it may redissolve and some become sedimented. The redissolution can only occur below the lysocline, which is shallower in the Pacific than the Atlantic. In contrast to the soft tissue pump, this mechanism tends to increase surface ocean pCO₂ and therefore atmospheric CO₂. The net reaction is: $$Ca^{++} + 2HCO_3^- \Rightarrow H_2O + CO_2 \uparrow + CaCO_3 \downarrow$$ ## Biological carbonate pump – Coccolithophores: calcite precipitating plankton Photo: courtesy D. Purdie - Ocean Circulation - Transport of heat - Heat fluxes cooling / warming of surface waters drives CO2 uptake / outgassing through impact on CO₂ solubility - Transport of recently ventilated waters high in anthropogenic carbon to depth - Transport of old waters high in remineralised - carbon and nutrients to the surface - Biological production and the drawdown in carbon concentrations associated with this - Nutrient supply that sustains biological production - Wind regime speed of air-sea CO₂ transfer related to wind strength - Ocean Circulation - Transport of heat - Heat fluxes cooling / warming of surface waters drives CO2 uptake / outgassing through impact on CO₂ solubility - Transport of recently ventilated waters high in anthropogenic carbon to depth - Transport of old waters high in remineralised - carbon and nutrients to the surface - Biological production and the drawdown in carbon concentrations associated with this - Nutrient supply that sustains biological production - Wind regime speed of air-sea CO₂ transfer related to wind strength Ocean CO_2 sink currently a delicate balance between speed at which CO_2 enters the ocean, & speed at which it is removed from the surface -> substantial variability Air-sea carbon dioxide fluxes # Annual flux of contemporary CO₂ Takahashi et al (2009) DSR #### NORTH ATLANTIC Variability in seasonal ΔpCO_2 amplitude, and continuing disagreement between different methods for constraining the seasonal CO_2 cycle #### Carbon dioxide Atmosphere #### Oceanic Anthropogenic Carbon dioxide Column inventory of anthropogenic carbon Brown et al., 2016 Le Quere et al., 2017 # Oceanic consequences of atmospheric CO₂ increases #### Ocean acidification • CO₂ generates an acid in seawater (pH drop): $$\begin{array}{c} \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow \\ & \text{HCO}_3^- + \textcolor{red}{\text{H}^+} \end{array}$$ surface ocean pH has already dropped by ~0.1 Doney et al 2009 ### CaCO₃ dissolution $CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+ \Leftrightarrow CO_3^{2-} + H^+$ - dissolves under high pressure, low temperature, acidic water - some of the H⁺ combines with CO₃²⁻ (buffering): - $CO_3^{2-} + H^+ \rightarrow HCO_3^{-}$ - saturation state of CaCO₃ depends on [Ca²⁺]*[CO₃²⁻] - · seawater is then less saturated as pH drops - · aragonite is more soluble than calcite - organisms with aragonite shells (pteropods, corals) may have difficulty calcifying by 2100 (average surface pH 7.75-7.95) #### CaCO₃ dissolution Aragonite saturation depth $\Omega = 1$ Calcite saturation depth $\Omega = 1$ Saturation depths are shallowing Monticello Petro et al (2018) #### **Additional Consequences** Observed air temperature changes 1902-2012 Anthropogenic heat uptake (column inventory) for last 50 years Sea level change 1993-2012 IPCC AR5 #### **Coral bleaching** High temperatures cause coral to expel the algae living within, causing the coral to turn completely white. Corals can survive a bleaching event, but they are under more stress and are subject to mortality Above-average sea water temperatures caused by global warming is the leading cause of coral bleaching #### **Deoxygenation** Levin, 2018 Air-sea carbon dioxide fluxes # Annual flux of contemporary CO₂ Takahashi et al (2009) DSR #### **Carbon in seawater** inorganic ~98% DIC organic ~2% DOC ~1% Trace ~90% ~10% CO₂(g) has many possible transformations upon dissolution in H₂O · Major dissolved forms: ``` CO_{2*} CO_{2(aq)} (aqueous carbon dioxide – a dissolved gas) H_2CO_3 \quad (carbonic \ acid - trace \ amount) HCO_3^- \quad (bicarbonate \ ion) CO_3^{-2} \quad (carbonate \ ion) ``` - · Species interconvert readily - Perturbations to one part of CO₂ system leads to redistribution of species - · Reactions not always intuitive! #### EFFECT OF ADDING CO₂ TO SEAWATER Slide courtesy A. Dickson #### CARBON DIOXIDE EQUILIBRIA IN SEA WATER concentration of unionized $$_{0} = \frac{CO_{2} \text{ in sea water (mol kg}^{-1})}{[CO_{2}]}$$ equilibration pressure total hydrogen $$K_1 = \frac{[H^+][HCO_3^-]}{[CO_2]}$$ $$HCO_3^- = H^+ + CO_3^{2-}$$ $$\zeta_2 = \frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}$$ $$CO_2 + CO_3^{2-} + H_2O \rightleftharpoons 2HCO_3^- K_1/K_2 = \frac{[HCO_3^-]^2}{[CO_2][CO_3^2-]}$$ Slide courtesy A. Dickson #### **CARBON DIOXIDE PARAMETERS IN SEA WATER** • Total Dissolved Inorganic Carbon $$C_{T} = [CO_{2}] + [HCO_{3}^{-}] + [CO_{3}^{2-}]$$ UNITS: moles per kilogram of solution (usually µmol kg⁻¹) • Total Hydrogen Ion Concentration (pH) $$pH = -\lg [H^+]$$ UNITS: pH is dimensionless But, total hydrogen ion concentration is in moles per kilogram of solution Partial Pressure of CO₂ (in air that is in equilibrium with the water sample) $$p(CO_2) = x(CO_2)p = [CO_2]/K_0$$ UNITS: pressure units (usually µatm) Total Alkalinity $$A_{T} = [HCO_{3}^{-}] + 2[CO_{3}^{2-}] + [B(OH)_{4}^{-}] + [OH^{-}] - [H^{+}]$$ UNITS: moles per kilogram of solution (usually µmol kg⁻¹) T, p independent T. p dependent These are the most commonly used analytical parameters; others exist – or could be imagined. T, p dependent T, p independent #### **CARBON DIOXIDE PARAMETERS IN SEA WATER** • Total Dissolved Inorganic Carbon $$C_{T} = [CO_{2}] + [HCO_{3}^{-}] + [CO_{3}^{2-}]$$ UNITS: moles per kilogram of solution (usually µmol kg⁻¹) • Total Hydrogen Ion Concentration (pH) $$pH = -lg[H^+]$$ UNITS: pH is dimensionless But, total hydrogen ion concentration is in moles per kilogram of solution Partial Pressure of CO₂ (in air that is in equilibrium with the water sample) $$p(CO_2) = x(CO_2)p = [CO_2]/K_0$$ UNITS: pressure units (usually µatm) Total Alkalinity $$A_{T} = [HCO_{3}^{-}] + 2[CO_{3}^{2-}] + [B(OH)_{4}^{-}] + [OH^{-}] - [H^{+}]$$ UNITS: moles per kilogram of solution (usually µmol kg⁻¹) T, p independent #### T. p dependent In a system at equilibrium, with both a gaseous and an aqueous phase, the state of the CO_2 system is described by a knowledge of the $p(CO_2)$ in the gas phase, and of the four concentrations: $[CO_2^-]$, $[HCO_3^-]$, and $[H^+]$, in the aqueous phase. However, there are also three equilibrium relationships between these various concentrations: $$K_0 = \frac{[CO_2]}{p(CO_2)}$$ $K_1 = \frac{[H^+][HCO_3^-]}{[CO_2]}$ $K_2 = \frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}$ ## **Seawater Carbonate chemistry** $$CO_2(g) \mathop{\Longrightarrow}\limits^{\textstyle{\mathsf{K}_0}} CO_2^*(aq) \ \mathop{\rightleftharpoons}\limits^{\textstyle{\mathsf{K}_1}} H^+(aq) + HCO_3^-(aq) \mathop{\rightleftharpoons}\limits^{\textstyle{\mathsf{K}_2}} H^+(aq) + CO_3^{2-}(aq)\,;$$ KO, K1 and K2 have been derived by many different sets of research across a range of salinities and temperatures using more real and synthetic seawater Carbon dioxide in seawater (K₀) Carbonic Acid (K1, K2) (1.57) $$\ln(K_0/k^\circ) = 93.4517 \left(\frac{100}{T/K}\right) - 60.249 + 23.3585 \ln\left(\frac{T/K}{100}\right) + S \left[0.023517 - 0.023656 \left(\frac{T/K}{100}\right) + 0.00047036 \left(\frac{T/K}{100}\right)^2\right]$$ where $k^\circ = 1 \text{ mol kg-soln}^{-1}$ $$(1.58)\log_{10}(K_1/K^\circ) = +\left(\frac{3670.7}{T/K}\right) - 62.008 + 9.7944\ln(T/K) - 0.0118S + 0.000116S^2$$ where $k^\circ = 1 \text{ mol ke-soln}^{-1}$ [Mehrbach et al., 1973] as refit by Dickson and Millero [1987] (1.59) $$\log_{10}(K_2/k^\circ) = \left(\frac{1394.7}{T/K}\right) + 4.777 - 0.0184S + 0.000118S^2$$ where $k^\circ = 1$ mol kg-soln⁻¹ [Mehrbach et al., 1973] as refit by Dickson and Millero [1987] ## **Carbon speciation for varying pH (total carbon constant)** $$CO_2(g) {\overset{{\mathsf{K}}_0}{\Longleftrightarrow}} CO_2^*(aq) \overset{{\mathsf{K}}_1}{\rightleftharpoons} H^+(aq) + HCO_3^-(aq) \overset{{\mathsf{K}}_2}{\rightleftharpoons} H^+(aq) + CO_3^{2-}(aq)\,;$$ $$K_1^* = \frac{\{H^+\}[HCO_3^-]}{[CO_2]}$$ $$pK_1 = -log_{10}(K_1^*),$$ $pH = pK_1 then [CO_{2T}] = [HCO_3^-]$ $$K_2^* = \frac{\{H^+\}[CO_3^{2-}]}{[HCO_3^{-}]}$$ $$pK_2 = -log_{10}(K_2^*), pH = pK_2$$ then $[HCO_3^-] = [CO_3^{2-}]$ ## **Effects of pressure on carbon speciation** $$CO_{2}(g) \xrightarrow{K_{0}} CO_{2}^{*}(aq)$$ $$CO_{2}^{*}(aq) + H_{2}O(1) \xrightarrow{K_{1}} H^{+}(aq) + HCO_{3}^{-}(aq)$$ $$HCO_{3}^{-}(aq) \xrightarrow{K_{2}} H^{+}(aq) + CO_{3}^{2-}(aq)$$ | | <u>1 atm</u> | 1000 atm | |-------------------|--------------|----------| | pK ₁ * | 5.89 | 5.55 | | pK_2^* | 9.13 | 8.93 | | | easing press | | Pressure coefficients of apparent dissociation constants of carbonic and boric acids in sea water $(S = 34\cdot2-35\cdot2^{4})_{co}$, after Culberson and Pytkowicz (1968) $\frac{(K_{1}^{*})_{d}}{(K_{1}^{*})_{1}} \frac{(K_{2}^{*})_{d}}{(K_{2}^{*})_{1}} \frac{(K_{2}^{*})_{1}}{(K_{2}^{*})_{1}}$ Doubt (m) 0°C 5°C 10°C 0°C 5°C 10°C 11°C 11° = 1 atm | | (1) | 1 /4 (| 1 /1 | (A | 2 /d / (1 | 2"/1 | | |-----------|------|--------|------|------|-----------|------|-------------| | Depth (m) | 0°C | 5°C | 10°C | 0°C | 5°C | 10°C | "1" = 1 atm | | 1,000 | 1.12 | 1.11 | 1.11 | 1.07 | 1.07 | 1.07 | | | 2,000 | 1.25 | 1.24 | 1.23 | 1.15 | 1.15 | 1.15 | | | 4,000 | 1.55 | 1.53 | 1.50 | 1.34 | 1.33 | 1.32 | | | 6,000 | 1.92 | 1.88 | 1.84 | 1.55 | 1.53 | 1.51 | | | 8,000 | 2.37 | 2.30 | 2.23 | 1.79 | 1.76 | 1.73 | | | 10,000 | 2.91 | 2.80 | 2.70 | 2.07 | 2.03 | 1.99 | | Therefore, as you raise a sample from depth to shallower levels: - K₁ and K₂ decrease - · Reactions shift to the left - pH increases - CO2(g) release There are four parameters of the marine carbon system in seawater that can be measured: DIC, alkalinity, pH and pCO₂ • DIC = $[CO_{2(aq)}] + [H_2CO_3] + [HCO_3^-] + [CO_3^2]$ At seawater pH, >99% of CO2 species are HCO_3^- and CO_3^{2-} , so DIC ~= [HCO_3^-] + [CO_3^{2-}] pCO₂ is the concentration ("partial pressure") in air $$pCO_2 = [CO2_{(aq)}] / K_0$$ $CO_{2(aq)}$ is the concentration in seawater K_0 is the solubility coefficient $$K_0 = [\mathrm{CO}_2^*] / f(\mathrm{CO}_2),$$ - Decreases with increasing temperature (warmer = higher pCO₂) - Decreases with increasing salinity (saltier = higher pCO₂) There are four parameters of the marine carbon system in seawater that can be measured: DIC, alkalinity, pH and pCO₂ - pH = -log [H+] - The pH of seawater varies only between about 7.5 and 8.4 (i.e. slightly alkaline) - Over geological time, pH is thought to be controlled by water / mineral equilibria - Over shorter timescales (10⁴ to 10⁵ years) the CO₂ system (and its shifting equilibria) regulates seawater pH $$CO_{2(aq)} + H_2O \leftrightarrow HCO_3^- + H^+$$ Temperature and pressure effects: For temperatures $$T_1$$ and T_2 : $pH_{T_2} = pH_{T_1} + 0.011(T_2 - T_1)$ Increased T causes pH to increase Increased P causes pH to decrease | | Calculated to | alues of (pi | ABLE 6.1 H ₁ —pH _p)- nd Pytkou | -at 34-8%
ics, 1968) | , salinity | | | |------------|---------------|--------------|--|-------------------------|------------|-------|--| | | | | pH at atmospheric pressure | | | | | | Temp. (°C) | Depth (m) | 7-6 | 7-8 | 8-0 | 8-2 | 8-4 | | | 0 | 2,500 | 0-112 | 0-107 | 0-103 | 0-100 | 0-098 | | | | 5,000 | 0-222 | 0-213 | 0-205 | 0-200 | 0-196 | | | | 7,500 | 0-330 | 0-318 | 0-308 | 0-300 | 0-294 | | | | 10,000 | 0-437 | 0-422 | 0-409 | 0-399 | 0-391 | | | 5 | 2,500 | 0-107 | 0-102 | 0-098 | 0-096 | 0-094 | | | | 5,000 | 0-212 | 0-203 | 0-197 | 0-192 | 0-189 | | | | 7,500 | 0-316 | 0-304 | 0-294 | 0-288 | 0-283 | | | | 10,000 | 0-417 | 0-402 | 0-391 | 0-383 | 0-376 | | | 10 | 2,500 | 0-102 | 0-098 | 0-094 | 0-092 | 0-091 | | | | 5,000 | 0-203 | 0-195 | 0-189 | 0-185 | 0-182 | | | | 7,500 | 0-302 | 0-291 | 0-283 | 0-277 | 0-272 | | | | 10,000 | 0-401 | 0-387 | 0-376 | 0-369 | 0-362 | | There are four parameters of the marine carbon system in seawater that can be measured: DIC, alkalinity, pH and pCO₂ - Alkalinity = the acid-buffering capacity of seawater - Total Alkalinity (TA) represents ability of seawater to resist pH change upon addition of acid. For seawater we focus on its ability to absorb H⁺ Total = $$[HCO_3^-] + 2[CO_3^{2-}] + [B(OH)_4^-] + [OH^-] + [HPO_4^{2-}] + 2[PO_4^{3-}] + [SiO(OH)_3^-] + [NH_3] + [HS^-] + ...$$ Alkalinity $-[H^+]_F - [HSO_4^-] - [HF] - [H_3PO_4] - ...$ - End point of an alkalinity titration (using acid titrant) is when: Added [H⁺] = 2[CO₃⁻²] + [HCO₃⁻] + [H₂BO₃⁻] + 2[HBO₃⁻²] + 3[BO₃⁻³] + [OH⁻] + [H⁺acceptors] - TA usually reported in meq/L or meq/kg (an "equivalent" is a mole of charge) There are four parameters of the marine carbon system in seawater that can be measured: DIC, alkalinity, pH and pCO₂ - Alkalinity = the acid-buffering capacity of seawater - Total Alkalinity (TA) represents ability of seawater to resist pH change upon addition of acid. For seawater we focus on its ability to absorb H⁺ $$\begin{array}{ll} \text{Total} &= [HCO_3^-] + 2[CO_3^{2-}] + [B(OH)_4^-] + [OH^-] + [HPO_4^{2-}] + 2[PO_4^{3-}] + [SiO(OH)_3^-] + [NH_3] + [HS^-] + \dots \\ &- [H^+]_F - [HSO_4^-] - [HF] - [H_3PO_4] - \dots \end{array}$$ End point of an alkalinity titration (using acid titrant) is when: Added [H⁺] = 2[CO₃⁻²] + [HCO₃⁻] + [H₂BO₃⁻] + 2[HBO₃⁻²] + $$[OH^-]$$ + [H⁺acceptors] TA usually reported in meq/L or meq/kg (an "equivalent" is a mole of charge) Carbonate alkalinity, CA = $2[CO_3^{2-}] + [HCO_3^{-}]$ Typically, HCO_3^{-} and CO_3^{-2} are present at ~1000x concentration of other proton acceptors • Hence: CA nearly equals TA There are four parameters of the marine carbon system in seawater that can be measured: DIC, alkalinity, pH and pCO₂ Alkalinity = the acid-buffering capacity of seawater $$= [HCO_3^-] + 2[CO_3^{2-}] + [B(OH)_4^-] + [OH^-] + [HPO_4^{2-}] + 2[PO_4^{3-}] + [SiO(OH)_3^-] + [NH_3^-] + [HS^-] + ... - [H^+]_F - [HSO_4^-] - [HF] - [H_3PO_4] - ...$$ (1.64) $$\ln (K_w/k^2) = \frac{-4576.752}{(T/K)} + 115.525 - 18.453 \ln(T/K)$$ $+ \left(\frac{-106.736}{(T/K)} + 0.69171\right) S^{0.5} + \left(\frac{-0.65643}{(T/K)} - 0.01844\right) S$ where $k^* = 1 \mod kg \cdot soln^{-1}$ [Millero, 1995] (1.65) $$\ln(K_{3P}/k^n) = \frac{-8814.715}{(T/K)} + 172.0883 - 27.927 \ln(T/K)$$ $+ \left(\frac{-160.340}{(T/K)} + 1.3566\right) S^{0.5} + \left(\frac{0.37335}{(T/K)} - 0.05778\right) S^{-1}$ where $k^{\circ} = 1 \text{ mol kg-soln}^{-}$ [Millero, 1995 1.66) $$\ln(K_{3P}/k'') = \frac{-3070.75}{(T/K)} - 18.141 + \left[\frac{17.27039}{(T/K)} + 2.81197\right]S^{0.5}$$ + $$\left(\frac{-44.99486}{(T/K)} - 0.09984\right)S$$ where $k^o = 1 \text{ mol kg-soln}^{-1}$ These components are derived from their own equilibrium equations, which have been characterized for a range of temperatures, and salinities $$[B(OH)_4^-] = B_T/(1+[H^+]/K_B)$$ $$[OH^{-}] = K_{W}/[H^{+}]$$ $$[H_{3}PO_{4}] = \frac{P_{T}[H^{+}]^{3}}{[H^{+}]^{3} + K_{1P}[H^{+}]^{2} + K_{1P}K_{2P}[H^{+}] + K_{1P}K_{2P}K_{3P}}$$ $$[H_{2}PO_{4}^{-}] = \frac{P_{7}K_{1P}[H^{+}]^{2}}{[H^{+}]^{3} + K_{1P}[H^{+}]^{2} + K_{1P}K_{2P}[H^{+}] + K_{1P}K_{2P}K_{3P}}$$ $$[HPO_4^{2-}] = \frac{P_T K_{1P} K_{2P} [H^+]}{[H^+]^3 + K_{1P} [H^+]^2 + K_{1P} K_{2P} [H^+] + K_{1P} K_{2P} K_{3P}}$$ $$[PO_4^{3-}] = \frac{P_7 K_{1P} K_{2P} K_{3P}}{[H^+]^2 + K_{1P} K_{2P} K_{3P}}$$ $$[PO_4^{3-}] = \frac{P_7 K_{1P} K_{2P} K_{3P}}{[H^+]^2 + K_{1P} K_{2P} K_{3P}}$$ [SiO(OH)₃] = $$Si_T/(1+[H^+]/K_{Si})$$ $$[NH_3] = NH_{3T}/(1+[H^+]/K_{NH_3})$$ $$[HS^-] = H_2S_T/(1+[H^+]/K_{H-S})$$ $$[H^+]_F = [H^+]/(1 + S_T/K_S)$$ $$[HSO_4^-] = S_T/(1+K_S/[H^+]_F)$$ $$[HF] = F_T/(1 + K_F/[H^+])$$ For e.g. phosphoric acid ## **Processes affecting DIC and TA** | | DIC | TA | [pH] | pCO _{2w} | |-------------------------------|-----|-------------------|------|-------------------| | Photosynthesis | -1 | +0.14 =
16/117 | + | - | | Respiration | +1 | -0.14 =
16/117 | - | + | | Calcification | -1 | -2 | / | + | | Air-sea CO ₂ input | +1 | 0 | - | + | | Warming | 0 | 0 | + | ++ | #### photosynthesis 117 $$CO_2 + 16 H^+ + 16NO_3^- + H_3PO_4 + 122 H_2O \rightleftharpoons (CH_2O)_{117}(NH_3)_{16}(H_3PO_4) + 138 O_2$$ respiration calcification: $Ca^{2+} + CO_3^{2-} \rightleftharpoons CaCO_3$ There are four parameters of the marine carbon system in seawater that can be measured: DIC, carbonate alkalinity, pH and pCO₂ Any two of these properties can be used to determine the composition of the carbon system in seawater (i.e., concentrations of $CO_2(aq)$, HCO_3^- , and CO_3^{2-}) and the other parameters not measured, Traditionally, alkalinity and pH or DIC were measured, and pCO₂ and DIC/pH calculated from them Table 8. Estimates of the Analytical Precision and Accuracy of Measurements of pH, TA, TCO₂, and pCO₂ | analysis | precision | accuracy | ref | |--------------------------------|---------------------------------|--------------------------------|-----| | pH (spectrophometric) | ±0.0004 | ±0.002 | 42 | | TA (potentiometric) | $\pm 1 \mu \text{mol kg}^{-1}$ | $\pm 3 \mu \text{mol kg}^{-1}$ | 29 | | TCO ₂ (coulometric) | $\pm 1 \mu \text{mol kg}^{-1}$ | $\pm 2 \mu \text{mol kg}^{-1}$ | 96 | | f_{CO_2} (infrared) | $\pm 0.5 \mu atm$ | $\pm 2 \mu atm$ | 97 | Table 9. Estimated Probable Errors in the Calculated Parameters of the Carbonate System Using Various Input Measurements | input | рН | TA $(\mu \text{mol kg}^{-1})$ | TCO_2
(μ mol kg ⁻¹) | $f_{\rm CO_2}$
(μ atm) | |------------------------------|--------------|---------------------------------|---|--------------------------------| | pH-TA | | | ±3.8 | ±2.1 | | pH-TCO ₂ | | ± 2.7 | | ± 1.8 | | $pH-f_{CO}$ | | ±21 | ± 18 | | | f_{CO_2} -TCO ₂ | ± 0.0025 | ± 3.4 | | | | f_{CO_2} -TA | ± 0.0026 | | ± 3.2 | | | $TA-TCO_2$ | ± 0.0062 | | | ± 5.7 | Using **pH and pCO2**: $$[CO_2^*] = pCO_2 K_0$$ and $$K_1^* = \underbrace{(H^+)[HCO_3^-]}_{[CO_2]}$$ Combining gives: $$[HCO_3^-] = \frac{[CO_2^*]K_1}{([H^+])}$$ $[CO_3^{2-}] = \left(\frac{[CO_2^*]K_1}{(H^+)}\right) \underbrace{K_2}_{(H^+)}.$ Then DIC $$\Rightarrow$$ [CO₂*] + [HCO₃-] + [CO₃2-] And Alk $$\Rightarrow$$ [HCO₃] + 2[CO₃²] + [B(OH)₄] + [OH⁻] + [HPO₄²] + 2[PO₄³] + [SiO(OH)₃] + [NH₃] + [HS⁻] + ... -[H⁺]_F -[HSO₄] -[HF] -[H₃PO₄] - ... $$CO_{2}(g) \xleftarrow{K_{0}} CO_{2}^{*}(aq)$$ $$CO_{2}^{*}(aq) + H_{2}O(l) \xleftarrow{K_{1}} H^{+}(aq) + HCO_{3}^{*}(aq)$$ $$HCO_{3}^{*}(aq) \xleftarrow{K_{2}} H^{+}(aq) + CO_{3}^{2-}(aq)$$ $\rm H_2O$ has very high unit activity (except at very high ionic strength) and is thus excluded from the equations (=measured) (=derived) Using **pH and pCO2**: $$[CO_2^*] = pCO_2 K_0$$ and $$K_1^* = \underbrace{(H^+)[HCO_3^-]}_{[CO_2]}$$ Combining gives: $[HCO_3^-] = \frac{[CO_2^-]K_1}{(H^+]}$ $-[H^{+}]_{r}$ $-[HSO_{r}^{-}]$ -[HF] $-[H_{2}PO_{4}]$ -... Then DIC $$= [CO_2^*] + [HCO_3^-] + [CO_3^2]$$ $$\text{And } \overbrace{\text{Alk}} \neq [\text{HCO}_3^-] + 2[\text{CO}_3^{2^-}] + [\text{B}(\text{OH})_4^-] + [\text{OH}^-] + [\text{HPO}_4^{2^-}] + 2[\text{PO}_4^{3^-}] + [\text{SiO}(\text{OH})_3^-] + [\text{NH}_3] + [\text{HS}^-] + \dots$$ $$CO_{2}(g) \xrightarrow{K_{0}} CO_{2}^{*}(aq)$$ $$CO_{2}^{*}(aq) + H_{2}O(l) \xrightarrow{K_{1}} H^{+}(aq) + HCO_{3}^{*}(aq)$$ $$HCO_{3}^{*}(aq) \xrightarrow{K_{2}} H^{+}(aq) + CO_{3}^{2^{*}}(aq)$$ H₂O has very high unit activity (except at very high ionic strength) and is thus excluded from the equations Thus, to determine the total CO_2 system in seawater all we need is pH and pCO_2 But these are not necessarily the best parameters to use because small errors in these lead to larger errors in DIC and TA (=measured) (=derived) So instead, could use carbonate alkalinity CA and DIC: $+[B(OH)_{4}^{-}]+[OH^{-}]+[HPO_{4}^{2-}]$ -[HSO₄]-[HF]-[H₃PO₄]-... en: $$[HCO_3^-] = \frac{DIC K_1[H^+]}{[H^+]^2 + K_1[H^+] + K_1K_2}$$, for [H+]... $$[CO_3^{2-}] = \frac{DIC}{[H^+]^2 + K_1[H^+] + K_1K_2}.$$ $$[CO_2^*] = \frac{[H^+][HCO_3^-]}{K_1}$$ $$f(CO_2) = \frac{[CO_2^*]}{M_1}.$$ $$CO_2(g) \xrightarrow{K_0} CO_2^*(aq)$$ $$CO_2^*(aq) + H_2O(1) \xrightarrow{K_1} H^+(aq) + HCO_3^-(aq)$$ $$HCO_3^-(aq) \stackrel{K_2}{\longleftarrow} H^+(aq) + CO_3^{2-}(aq)$$ Biogeosciences, 12, 1483–1510, 2015 www.biogeosciences.net/12/1483/2015/ doi:10.5194/bg-12-1483-2015 © Author(s) 2015. CC Attribution 3.0 License Many packages are available to calculate the carbonate system: We tend to use the CO2SYS program that is available as a standalone program (CO2calc), or in Excel, or in MATLAB code. Comparison of ten packages that compute ocean carbonate chemistry J. C. Orr¹, J.-M. Epitalon², and J.-P. Gattuso^{3,4} - Data are inputted for sample salinity, temperature, pressure, phosphate, silicate, and two of the four carbon parameters - Selections are made for different choices of dissociation constants, which will depend on application - The full marine carbonate system will then be calculated ## Annual flux of contemporary CO₂ Takahashi et al (2009) DSR What sets the net air-sea flux? ## The flux is set by patterns of sea-surface pCO_{2sw}, forced by: #### Ocean circulation; - · Is surface water is cooling or heating? - Is water being mixed up from depth? ### Ocean biology; - · Is biological activity strong or weak? - Is calcium carbonate being precipitated? ### The rising concentration of atmospheric CO₂ pCO₂ of air is rising and this tends to favour a flux from atmosphere into the ocean. Difference between fugacities of CO₂ in surface seawater and air $$CO_2$$ air-sea flux = $K \cdot \alpha \cdot (fCO_{2water} - fCO_{2air})$ pCO₂: partial pressure of CO₂ (in µatm) fCO_2 : fugacity of CO_2 (in μ atm = 0.102315 Pa) [\sim equivalent to pCO₂ but accounting for 'non-ideal' nature of CO₂ molecules] $$fCO_2 = pCO_2 \exp\left(P_s \frac{B+2\delta}{RT}\right)$$ Essentially: $fCO_2 = \gamma pCO_2 = \gamma P xCO_2$ γ, fugacity coefficient ~0.997) where $R = 82.05746 \text{ (cm}^3 \text{ atm mol}^{-1} \text{ K}^{-1})$ P_s = sea level pressure B and δ = virial coefficients for CO₂ Virial coefficients for CO₂ Coefficient $B \text{ (cm}^3 \text{ mol}^{-1})$ is given by $B = -1636.75 + 12.0408T - 3.27957e^{-2}T^2$ $-1636.75 + 12.0408T - 3.27957e^{-2}T + 3.16528e^{-5}T^3$ and δ (cm³ mol⁻¹) by $\delta = 57.7 - 0.118T.$ Solubility of CO₂ gas in water Difference between fugacities of CO₂ in surface seawater and air Wanninkhof (2014) $$CO_2$$ air-sea flux = $K \cdot \alpha \cdot (fCO_{2water} - fCO_{2air})$ Gas transfer velocity: $K = 0.251 \text{ u}^2 (\text{Sc} / 660)^{-0.5}$ u = wind speed in m s⁻¹ Sc = Schmidt 'piston velocity' number, which varies with SST (°C) $Sc = 1923.6 + -125.06T + 4.3773T^2 + -0.085681T^3 + 0.00070284T^4$ CO_2 solubility, α , is a function of temperature (°K) and salinity Where $$\alpha = -58.0931 + 90.5069(100/T) + 22.2940 \ln(T/100) + SSS[0.027766 - 0.025888(T/100) + 0.0050578(T/100)^2]$$ #### Gas transfer velocity The gas transfer velocity K (also called "piston velocity", or "coefficient of gas exchange") is a parameter which measures how easy it is for a gas to be transported across the interface. Called a velocity because it has these dimensions (LT-1), it is not however the velocity of the molecules transferring. A typical value of *K* in the ocean would be 3 metres per day, but it varies by more than an order of magnitude with weather conditions, being higher (easier transfer) in windy conditions and rough seas. (why? more active turbulence, therefore a thinner film layer). Diffusivity is an inverse function of molecular weight, so transfer velocity decreases for higher molecular weight gases. The dependency is relatively weak however. ### Gas transfer velocity ### CO_2 air-sea flux = $K \cdot \alpha \cdot (fCO_{2water} - fCO_{2air})$ Calculate air-sea flux of CO₂ for local waters for 2018 atmospheric CO₂ of 405.35: | Salinity | Temp
(°C) | Temp (°K) | Wind
speed
(ms ⁻¹)
u | pCO _{2sw} | |------------|--------------|------------|---|--------------------| | 32.3450012 | 19.6359997 | 292.786 | 7.40736 | 556.4 | | 33.9990005 | 19.2959995 | 292.446 | 3.49792 | 793.6 | | 34.3310013 | 18.8500004 | 292 | 3.90944 | 445.7 | | 34.3400002 | 18.9179993 | 292.067999 | 4.73248 | 443.3 | | | | 273.15 | | | | 34.3170013 | 18.8829994 | 292.032999 | 4.52672 | 386.4 | | 33.3139992 | 19.191 | 292.341 | 2.10904 | 469.5 | | 32.598999 | 19.566 | 292.716 | 2.72632 | 468.3 | $$K = 0.251 \text{ u}^2 (\text{Sc} / 660)^{-0.5}$$ $\text{Sc} = 1923.6 + -125.06T + 4.3773T^2 + -0.085681T^3 + 0.00070284T^4 - --- (T, °C) = °C)$ $$\alpha = -58.0931 + 90.5069(100/T) + 22.2940 ln(T/100) + SSS[0.027766 - 0.025888(T/100) + 0.0050578(T/100)^2] (T, °K)$$